Ant Colony Optimization and Stochastic Gradient Descent

نویسندگان

  • Nicolas Meuleau
  • Marco Dorigo
چکیده

In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Updating ACO Pheromones Using Stochastic Gradient Ascent and Cross-Entropy Methods

In this paper we introduce two systematic approaches, based on the stochastic gradient ascent algorithm and the cross-entropy method, for deriving the pheromone update rules in the Ant colony optimization metaheuristic. We discuss the relationships between the two methods as well as connections to the update rules previously proposed in the literature.

متن کامل

Model-Based Search for Combinatorial Optimization: A Comparative Study

In this paper we introduce model-based search as a unifying framework accommodating some recently proposed heuristics for combinatorial optimization such as ant colony optimization, stochastic gradient ascent, crossentropy and estimation of distribution methods. We discuss similarities as well as distinctive features of each method, propose some extensions and present a comparative experimental...

متن کامل

Model-based Search for Combinatorial Optimization

In this paper we introduce model-based search as a unifying framework accommodating some recently proposed heuristics for combinatorial optimization such as ant colony optimization, stochastic gradient ascent, cross-entropy and estimation of distribution methods. We discuss similarities as well as distinctive features of each method and we propose some extensions.

متن کامل

Model-Based Search for Combinatorial Optimization: A Critical Survey

In this paper we introduce model-based search as a unifying framework accommodating some recently proposed metaheuristics for combinatorial optimization such as ant colony optimization, stochastic gradient ascent, cross-entropy and estimation of distribution methods. We discuss similarities as well as distinctive features of each method and we propose some extensions.

متن کامل

Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran

In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artificial life

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2002